Сарвартдинов Григорий Игоревич Учитель физики Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №38 имени А.У. Крутченко муниципального образования Абинский район

Технологическая карта урока Физики.

7 класс

Тема урока. Движение молекул.

Цели:

- 1. Формирование представления о диффузии, как о явлении
 - самопроизвольного смешивания веществ в твердом, жидком и газообразном состояниях,
 - непрерывном и хаотичном движении молекул.
- 2. Формирование представления о значении диффузии.
- 3. Формирование логического мышления, умений обобщать.
- 4. Развитие познавательного интереса учащихся.

Демонстрации:

- 1. Освежитель воздуха "Кофе", (или любой другой освежитель, на котором подписано название "Лимон", "Апельсин", "Хвойный")
- 2. Диффузия аммиака. (Аммиак, фенолфталеин.)
- 3. Кристаллы йода на стекле под слоем парафина.
- 4. Диффузия в жидкости. (Сосуды, раствор медного купороса, вода)
- 5. Пшено и горох.

Задачи:

Образовательные:

- обогащать методологического аппарата получение знаний через эксперимент;
- учить определять физическое понятие диффузия, выявлять сущность явления: зависимость диффузии от агрегатных состояний вещества, температуры вещества;
- учить применять знания и опыт в различных ситуациях, в том числе и проблемных ситуациях; ставить и проводить научный эксперимент, получать и анализировать его результаты;
- учить работать с различными источниками информации: учебным текстом, видеоматериалом.

учить— учить выделять признаки (свойства) и на их основе проводить сравнение; Развивающие:

- учить грамотно читать физические тексты; логически правильно выражать свои мысли средством физико-математического языка;
- развивать концентрацию, переключаемость, мобильность;

- формировать прогностические свойства путем умения выдвигать гипотезы, предположения;
- развивать умения анализировать ход эксперимента, на его основе формулировать логические выводы;
- развивать ассоциативное мышление;

Воспитательные:

- формировать собственную точку зрения, и ее обоснование, собственные способы действия;
- воспитывать экологическое сознание учащихся, эмоционально-ценностное отношение к миру, ответственность за результаты своего труда.

Тип урока: комбинированный.

Ход урока.

I. Инициация. (2 минуты).

Метод «Хорошее настроение» Здравствуйте. Какое ваше настроение? Мне бы хотелось, чтобы каждый из вас настроился на рабочий лад. Давайте поделимся своим настроением друг с другом. Повернитесь к своему товарищу по парте, улыбнитесь ему, поделитесь с ним своим хорошим настроением. Пожелаем друг другу успехов. Скажите себе: «Я нахожусь сейчас на уроке физики. А обо всем остальном я не буду думать сейчас, я подумаю об этом потом». Прекрасно! А теперь давайте приступим к работе.

II. Вхождение в тему. (2 минуты).

Учитель. Эпиграфом к нашему уроку мне хотелось бы взять слова У. Блейка:

В одном мгновенье видеть вечность

Огромный мир – в зерне песка,

В едином миге – бесконечность

И небо – в чашечке цветка.

Слайд 1

Метод «Черный ящик».

Учитель задает вопросы и ведет диалог с учащимися по обсуждению выдвинутых гипотез:

- Как вы думаете, как себя ведут молекулы в веществе?
- Что мы будем изучать на уроке?
- Какова тема урока?

Учитель побуждает ребят к постановке познавательных и образовательных целей.

- Продолжим заглядывать внутрь вещества. Какими еще свойствами обладают молекулы?

Внесем "черный ящик" (в ящике находится долька апельсина). **Проблемный вопрос.** Что в "черном ящике"? Что помогло нам ответить на этот вопрос?

Тема нашего урока? **Броуновское движение.** Диффузия в газах, жидкостях и твердых телах. Cлайд 2

III.Закрепление изученного (10 мин)

- 1. Ответы на вопросы к § 7:
 - 1. Вещества состоят из мельчайших частиц атомов и молекул.
- 2. Это подтверждает, например, изменения объема воздушного шарика при сжатии.

- 3. При увеличении расстояния объема увеличивается, при уменьшении уменьшается.
- 4. Опыт с растворение в сосуде крупинки гуаши и переливанием частиц окрашенной воды в другой сосуд с водой.
- 2. Ответы на вопросы к § 8:
 - 1. Молекула мельчайшая частица вещества.
- 2. Размеры молекул очень малы, их сложно увидеть даже с помощью электронного микроскопа.
- 3. Молекула воды состоит из двух атомов водорода и одного атома кислорода. Те, в свою очередь состоят из более мелких частиц.
 - 4. См рис. 21 учебника.

3. Физический диктант "Веришь - не веришь"

Вариант 1.

- 1. Вещество состоит из мельчайших частиц, едва различимых невооруженным глазом. (*Hem*)
- 2. Вещество состоит из мельчайших частиц, которые можно увидеть на экране электронного микроскопа. ($\mathcal{A}a$)
- 3. Объем газа при нагревании увеличивается, т. к. каждая молекула становится больше по размеру. (*Hem*)
- 4. Атом мельчайшая частица вещества. (Нет)
- 5. В молекуле может быть более 1000 атомов. ($\mathcal{A}a$)
- 6. Стальной шарик при нагревании увеличивается в объеме, т. к. промежутки между молекулами становятся больше. ($\mathcal{A}a$)
- 7. Пленка масла, растекаясь по поверхности воды, может занять любую площадь. (*Hem*)
- 8. Молекулы воды точно такие же, как и молекулы льда. ($\mathcal{A}a$)
- 9. Объем тела равен сумме объемов его молекул. (Нет)
- 10. Атомы состоят из молекул. (Нет)

Вариант 2.

- 1. Вещество состоит из мельчайших частиц, видимых в оптический микроскоп. (Нет)
- 2. Объем тела при нагревании уменьшается. (Нет)
- 3. Объем жидкости при охлаждении уменьшается, т. к. промежутки между молекулами становятся меньше. ($\mathcal{A}a$)
- 4. Молекула мельчайшая частица вещества. (Да)
- 5. В молекуле не может быть более 100 атомов. (Нет)
- 6. Молекулы водяного пара отличаются от молекул воды. (Нет)
- 7. При сжатии газа уменьшается размер молекул. (Нет)
- 8. Газом из двухлитрового сосуда можно заполнить четырехлитровый сосуд. ($\mathcal{A}a$)
- 9. Объем тела больше суммы объемов его молекул. ($\mathcal{A}a$)
- 10. Атомы состоят из элементарных частиц. ($\mathcal{A}a$)

IV. Инпут (лекция). (12 минут).

Мысленный эксперимент.

В своей поэме Лукреций Кар (470 год до н. э.) так описывает движение молекул:

«Кроме того, потому обратить тебе надо вниманье На суматоху в телах, мелькающих в Солнечном свете, Что из нее познаешь ты материи также движенья, Происходящие в ней потаенно и скрыто от взора. Ибо увидишь ты там, как много пылинок меняют Путь свой от скрытых толчков и опять отлетают обратно, Всюду туда и сюда разбегаясь во всех направленьях».

Слайд 4

1. Диффузия *в газах*.

Урок начинаю с распыления освежителя; в случае, если ученик почувствовал запах, **он должен встать**. Таким образом, постепенно, через пару минут, встанут все учащиеся класса. Они безошибочно определят, что за освежитель был распылен.

В беседе учащиеся подводятся к выводам: жидкость, освежитель, превращается в пар; молекулы газа находятся в движении; скорость молекул газа значительна; между молекулами газов, из которых состоит воздух, имеются промежутки; вещества способны перемешиваться по причине движения молекул.

Примером является распространение запахов в воздухе, но запах распространяется не мгновенно, а спустя какое-то время. Почему так происходит? Просто движение молекул пахучего вещества в определенном направлении мешает движение молекул воздуха. Cлайd 5

в жидкостях

У меня на столе в высокий стакан налиты две жидкости: снизу голубой раствор медного купороса, сверху — вода; между ними резкая граница. Если купорос и вода способны самопроизвольно смешаться, то граница между ними должна исчезнуть. Предлагаю ученикам следить за этой границей между жидкостями.

В это время демонстрирую диффузию газов на следующем опыте: к внутренним стенкам высокого цилиндрического сосуда прикрепляю смоченные фенолфталеином полоски белой бумаги. Цилиндр закрываю сверху картоном с прикрепленным к нему кусочком ваты, смоченной нашатырным спиртом. Газ аммиак диффундирует вниз. Если аммиак и воздух перемешиваются, то рано или поздно полоски бумаги окрасятся в ярко-малиновый цвет.

Предлагаю также следить за их цветом.

А в это время рассказываю об эксперименте со смешиванием твердых тел.

• в твердых телах

Хорошо очищенные и плотно прижатые друг к другу пластины из золота и свинца диффундируют на глубину 1мм за 5 лет.

Демонстрация диффузии кристаллов йода на стекле под слоем парафина.

(парафин около кристалликов йода окрасился в коричневый цвет)

Учитель: Итак, что же произошло за это время в первых двух экспериментах?

Учащиеся: Граница между жидкостями не изменилась, а листочки окрасились, т.е. аммиак и воздух перемешались в сосуде.

Учитель: Однако смотрите, что получилось в стакане, куда аккуратно налили купорос и воду неделю назад.

Учащиеся: Граница размыта, купорос и вода перемешались.

Учитель: Сформулируйте ответ, вытекающий из наблюдений и опытов.

Учащиеся: Если привести в соприкосновение твердые тела, жидкости или газы из разных веществ, то они сами собой смешиваются.

Учитель: Мы познакомились с новым явлением, в физике оно известно под названием $\Pi U \Phi \Phi V 3 U S$.

(Работа с учебником, запись определения в тетрадь.)

Явление, при котором происходит самопроизвольное взаимное проникновение молекул одного вещества между молекулами другого, называют диффузией

(В итоге, в тетради обучающихся и на доске создается опорный конспект)

V. Проработка содержания темы. (10 минут).

<u>Проблемный вопрос учителя</u>: Хорошо, допустим, вы меня убедили и мельчайшие частицы существуют. А как «упакованы» эти частицы (как расположены)? Выслушать предположения ребят.

Метод «Мозговой штурм»

Перед учениками ставлю вопросы:

- Какие свойства молекул обусловливают смешивания веществ?
- Почему возможна диффузия?
- Какие невидимые процессы происходят с молекулами при диффузии?
- Как объяснить явление проникновение одного вещества в другое?
- Могло бы оно происходить, если бы молекулы были неподвижны и между ними не было промежутков?

Фронтальный эксперимент.

Демонстрация явления диффузии на модели:

- 1. В стаканчик насыпать не доверху горох,
- 2. Досыпать стаканчик с горохом пшеном
- 3. Слегка встряхнуть стаканчик.

(Достаточно эффектно видно, как проникают крупинки пшена в промежутки между горошинами)

После проведенного эксперимента и беседы с учащимися подчеркиваю, что явление диффузии происходит без вмешательства извне, за счет движения самих молекул, т.е. может быть объяснено только тем, что молекулы беспрерывно и беспорядочно движутся и сталкиваются.

Учитель: Как будет вести себя маленькая частичка нерастворимого вещества в жидкости, если окружающие ее молекулы жидкости непрерывно и беспорядочно движутся?

Учащиеся: Молекулы, окружающие частицу, движутся в разных направлениях, часть из них ударяются о частицу. Поскольку частица маленькая, она может двигаться под действием этих ударов. Т.к. молекулы движутся беспорядочно, то число ударов с разных сторон в один и тот же момент различно, и частица будет двигаться то в одну, то в другую сторону, беспорядочно.

Явление беспорядочного движения взвешенных нерастворимых частиц вещества в жидкости или газе называют броуновским движением.

Откуда такое название, вы узнаете дома из учебника.

Слайд 7

2. Значение диффузии в природе и производственной практике.

• Вследствие диффузии газа состав воздуха у поверхности Земли однороден;

- Диффузия имеет существенное значение в питании растений и других организмов;
- Явление диффузии используют на сахарных заводах при извлечении сахара из свеклы;
- На явлении диффузии основаны соление овощей, варка варения, получение компотов и многие другие технологические процессы;
- Диффузию молекул твердых тел используют в технике: для придания железным и стальным деталям значительной твердости их поверхностный слой подвергают диффузному насыщению углеродом (цементация).

Решение задач (Слайды 8-15)

- 1. В одну банку с огурцами налили холодный рассол, а в другую горячий.
- В какой из двух банок огурцы быстрее просолятся? Почему?
- 2. Если в стакан с водой опустить крупинку краски, то через некоторое время вокруг нее образуется цветное «облачко». Объясните это явление.
- 3. Почему дым от костра по мере подъёма его перестает быть видимым, даже в безветренную погоду?
- 4. Объясните почему бельё разного цвета, замоченное вместе, окрасилось?
- 5. Гоголь «Вечера на хуторе близ Диканьки «... разговорились об том, как нужно солить яблоки. Старуха моя начала было говорить, что нужно наперед хорошенько вымыть яблоки, потом намочить в квасу, а потом уже...» На каком явлении основано соление яблок? Что нужно сделать, чтобы яблоки просолились быстрей?
- 6. Объясните пословицы:
 - Ложка дёгтя в бочке мёда (русская).
 - На мешке с солью и верёвка солёная (корейская).
 - Овощной лавке вывеска не нужна (японская).
 - Золотые цветы не пахнут (тамильская).
 - Отрезанный ломоть к хлебу не приставишь (русская).
- 7. Отгадайте загадки:

Вокруг носа вьётся, а в руки не даётся. (Запах)

Сидит дед, в шубу одет. Кто его раздевает, тот слёзы проливает. (Лук)

VI. Подведение итогов. Рефлексия (2 минуты).

УЧИТЕЛЬ: - Сегодня мы убедились, что сами можем многого добиться, пользуясь методами физики: опыты, размышления приводят нас к гипотезе, с помощью которой мы объясняем происходящие вокруг нас явления.

«Я не знаю, чем я кажусь миру; мне самому кажется, что я был только мальчиком, играющим на берегу моря и развлекающимся тем, что от времени до времени находил более гладкие камушки или более красивую раковину, чем обыкновенно, в то время как великий океан истины лежал передо мной совершенно неразгаданным». И. Ньютон

Слайд 16

Мне очень понравилось с вами работать.

А теперь давайте подведем итоги вашей работы на сегодняшнем уроке.

VII. Домашнее задание. (1 минута) § 9. ЗЛ № 56-64

Рисуем явление диффузии.

Литература:

1. Плетникова Т.А. Нескучный урок физики в 7-м классе по теме: "Диффузия" http://festival.1september.ru/articles/311114

Тема: Движение молекул

Автор: Сарвартдинов Г.И., учитель физики

Суньте палец в пламя от спички, и вы испытаете ощущение, равного которому нет ни в небе, ни на земле; однако, все, что произошло, есть просто следствие движения молекул.

Джон Уиллер

«Кроме того, потому обратить тебе надо вниманье На суматоху в телах, мелькающих в Солнечном свете, Что из нее познаешь ты материи также движенья, Происходящие в ней потаенно и скрыто от взора. как много пылинок меняют

Ибо увидишь ты там,

Путь свой от скрытых толчков и опять отлетают

но,

B

азбегаясь во всех направленьях».

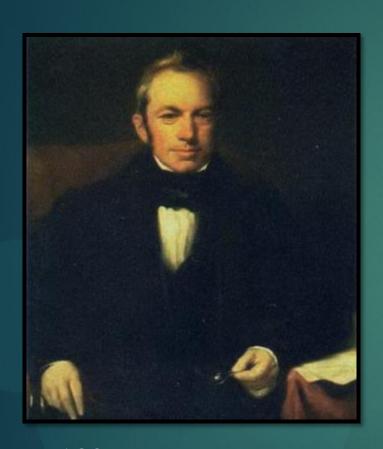
ЛУКРЕЦИЙ КАР 470 ГОД ДО Н. Э.

Диффузия в газах

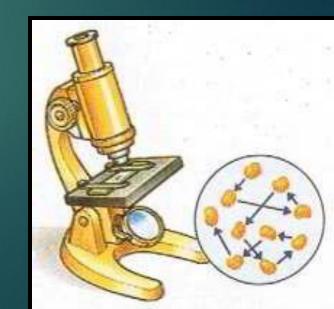
Примером является распространение запахов в воздухе, но запах распространяется не мгновенно, а спустя какое-то время.

Почему так происходит?

Просто движение молекул пахучего вещества в определенном направлении мешает движение молекул воздуха.


Диффузия — от лат. растекание, распространение

- явление взаимного проникновения молекул одного вещества между молекулами другого вещества.



Броуновское движение

видимое в микроскоп хаотическое перемещение очень малых частиц вещества под действием ударов молекул. Названо в честь английского ученого Броуна (1773–1858).

В 1827 Броун проводил исследования пыльцы растений.

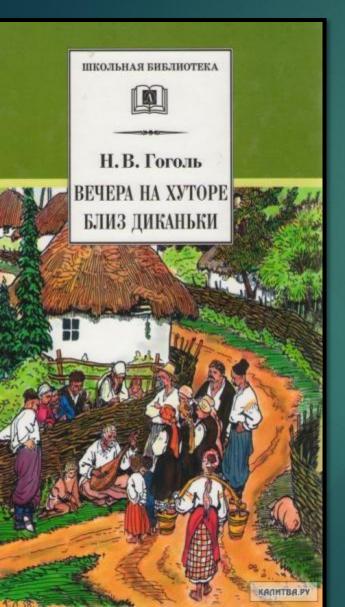
В одну банку с огурцами налили холодный рассол, а в другую – горячий.

В какой из двух банок огурцы быстрее просолятся? Почему?

Если в стакан с водой опустить крупинку краски, то через некоторое время вокруг нее образуется цветное облачко». Объясните это явление.

Решаем задачи

Почему дым от костра по мере подъёма его перестает быть видимым, даже в безветренную погоду?



Решаем задачи

Объясните почему бельё разного цвета, замоченное вместе, окрасилось?

Решаем задачи

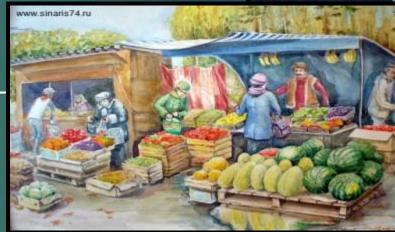
«... разговорились об том, как нужно солить яблоки. Старуха моя начала было говорить, что нужно наперед хорошенько вымыть яблоки, потом намочить в квасу, а потом уже...»

На каком явлении основано соление яблок? Что нужно сделать, чтобы яблоки просолились быстрей?

Объясните пословицы

Ложка дёгтя в бочке мёда (русская)

На мешке с солью и верёвка солёная (корейская).



Овощной лавке вывеска не нужн (японская).

Золотые цветы не пахнут (тамильская).

Отрезанный ломоть к хлебу не приставишь (русская).

Загадка

Вокруг носа вьётся, а в руки не даётся.

ЗАПАХ

Загадка

Сидит дед, в шубу од<mark>ет.</mark> Кто его раздевает, тот слёзы проливает

ЛУК

««Я не знаю, чем я кажусь миру; мне самому кажется, что я был только мальчиком, играющим на берегу моря и развлекающимся тем, что от времени до времени находил более гладкие камушки или более красивую раковину, чем обыкновенно, в то время как великий океан истины лежал передо мной совершенно неразгаданным».

НЬЮТОН

Д.3.

- ▶ § 9
- 3∧ №56-64
- ▶ Рисуем явление диффузии
- ► A/APNº1